**Bjarke's No Fun Zone** *Taking a beating from our favourite integral...* \begin{equation} L_{\text{r}}(\mathbf {x} ,\omega _{\text{o}},\lambda ,t)=\int _{\Omega }f_{\text{r}}(\mathbf {x} ,\omega _{\text{i}},\omega _{\text{o}},\lambda ,t)L_{\text{i}}(\mathbf {x} ,\omega _{\text{i}},\lambda ,t)(\omega _{\text{i}}\cdot \mathbf {n} )\operatorname {d} \omega _{\text{i}} \end{equation} Posts =============================================================================== 2025 ------------------------------------------------------------------------------- * [Deferred Hybrid Path Tracing Series: Shadows, Noise and Sampling in Real-Time Rendering](posts/2025/shadows_noise_and_sampling/) (23/03/2025) * [Draft: 2025 Update](posts/2025/update/) (../03/2025) 2022 ------------------------------------------------------------------------------- * [Bachelor Thesis: Global Illumination Overview](posts/2022/bachelor_thesis_gi_overview/) (02/08/2022)